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Abstract

Current transformer-based software vulnerability detection approaches consider the function as input.
However, one drawback of the transformer-based model is that it processes a certain number of input tokens
and discards the remaining ones. The discarded tokens may contain the root cause of vulnerabilities, and
the predictions may be inaccurate. In this paper, our proposed approach makes slices based on the program
points of interest where a generated slice is smaller in length than the function and includes statements
from different parts of the function depending on the program point of interest. Thus, it reduces the chance
of discarding the root causes of vulnerability from the input. We classify a function as vulnerable or non-
vulnerable based on the prediction of its slices. Experimental result shows that our slice-based approach
performs better than the function-based approach, and gets a performance increase of 2.7%, 1%, 0.7%, and
0.4% in Recall, F1 score, Accuracy, and Precision, respectively. Our code and dataset details are available
at https://github.com/mahbubcseju/SliceLevelVulnerabilityDetection.

1 Introduction

A software vulnerability is a weakness or flaw in a software application that can damage the software’s security,
usage, or stability. Software vulnerabilities can hinder the operations of software systems, resulting in financial
losses for software companies. A recent National Institute of Standards and Technology study shows that the
US economy loses about 60 billion dollars yearly in software redistribution, redeployment, and patching due to
vulnerabilities [1]. Therefore, it is necessary to detect vulnerabilities before releasing software to real users. In
recent years, deep learning-based techniques have been widely used in detecting software vulnerabilities, and
transformer-based models, such as CodeBERT [2], VulBERTa [3], LineVul [4], etc., have achieved state-of-the-art
performance in vulnerability detection.

Transformer-based approaches use the pre-trained model with the down-streaming data to solve different
down-streaming tasks. It takes a function as a flat input sequence and tokenizes it using different techniques.
After that, it only considers the first max length of tokens to feed the transformer where the max length is a
hyper-parameter. However, if the source of the vulnerability exists after the max length of tokens, it cannot
learn the root causes of the vulnerability because it discards that part. To mitigate this issue, one obvious
solution is to increase the max length, but increasing the max length may produce two problems- (i) it increases
the model’s complexity, and (ii) it creates unnecessary extra learnable parameters if more padding is added for
smaller functions. Therefore, fixing this by increasing the max length is not a feasible solution. That is why it
is important to resolve this issue without increasing the max length so that the transformer-based model can
learn the root causes of vulnerabilities.

This project proposes a new approach to solve the above issues. Instead of discarding the continuous part
of the input program, our approach makes slices based on the program points of interest, and a slice can have
statements from any part of the program. It is necessary to mention that the generated slice length is usually
smaller than that of the function. Additionally, we assume that the number of tokens of the generated slices
will not exceed the max length of the model. Finally, it sends these slices to the transformer-based model for
training and testing. By doing so, it reduces the length of the input program and maximizes the probability of
using the root causes of the vulnerability in the model input.
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Figure 1: The architecture of our proposed model

2 Methodology

Our proposed algorithm is divided into two phases: Training and Testing. At first, it takes the whole function
as a flat input sequence during the training phase. After getting the input, it divides it into multiple slices based
on the program slicing method from the existing literature, MVD [5] and SySeVR [6]. Once the input function
is sliced, each slice is labeled as vulnerable or non-vulnerable based on the commit analysis of a program.
Then, a transformer-based model is fine-tuned with the labeled slices, where the model learns whether a slice
is vulnerable or not. During testing, the model generates the slices and their labels using the same way as the
training phase. After that, the trained transformer model makes predictions about all the slices of the input
function. Finally, it classifies the function as vulnerable if any of that function’s slices is predicted as vulnerable;
otherwise, it considers the function non-vulnerable. The overall architecture of the proposed model is provided
in Figure 1.

2.1 Program Slicing

To perform program slicing, we adopt the technique used in the two existing works, SySeVR and MVD. They
first use Joern to parse source code and construct the program dependencies graph (PDG). Then they perform
forward and backward slicing from four program points of interest. The program points of interest are-

1. Library/API function call (FC): SySeVR authors published a list of 811 library/API function calls that
correspond to the 106 CWE Ids [7]. Any statement with a function call from that list is considered a
program point of interest.

2. Array usage (AU): Any statement where the array element is declared or accessed is considered a program
point of interest.

3. Pointer usage (PU): Any statement where the pointer variable is declared or accessed is regarded as a
program point of interest.

4. Arithmetic expression (AE): Any statement with an arithmetic expression or having ’=’ is considered a
program point of interest.

It is worth mentioning that starting from the program point of interest, they perform backward slicing
according to both control and data dependencies but perform forward slicing based on only data dependencies.
They do not use control dependencies on forward slicing because consideration of control dependencies on the
program point of interest would add many extraneous statements which have nothing to do with vulnerabilities.

2.2 Labeling

To label the slices, we leverage the diff files generated from the current and next commits of the input
function/program. We label a slice vulnerable if and only if it is extracted from a vulnerable function and at
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least one of the lines of that slice is removed/altered in the next commit (starting with ’-’ in diff files). If
any slice extracted from a vulnerable function does not have any line removed/altered in the next commit, we
don’t consider that slice. On the other hand, we label a slice non-vulnerable if and only if it is extracted from
a non-vulnerable function.

2.3 Transformer Model for Vulnerability Detection

We use the CodeBERT [2] transformer model as the detection model. CodeBERT is a pre-trained programming
language model which can be used for many down streaming tasks.

At the very first step, CodeBERT takes a source code as input and tokenizes the input code. During
tokenization, it adds two extra tokens; one is the [CLS] token which is added at the beginning of the sequence,
and another is the [SEP] or [S] token, which is added at the end of the sequence. It then represents each token
as a vector of embed dim size. If the input text has T tokens, it gets a matrix of size (T × embed dim) after
converting each token into a vector of size embed dim. Then the token embedding goes through 12 encoder
blocks sequentially. The dimension of the input and output of each encoder block is the same, and the output
of one encoder is the input of the next encoder. A specific encoder block is responsible for finding relationships
among the input embeddings and encoding them in its output representations. The initial block learns the basic
relationship, but the more it goes through the encoder block, the more complex relations it learns.

In each encoder block, the input is passed through a multi-head attention layer. The multi-head attention
layer computes the attention multiple times in parallel with different weights and then concatenates these
attentions together. The result of each of those parallel computations of attention is called a head. After
normalizing the output of the multi-head attention, the result is sent to a feed-forward network. The normalized
output is the output of the encoder block.

After getting the output of the final encoder block, the embedding of the [CLS] token is sent to a classification
layer (multi-layer perceptron). Finally, the classification layer decides whether the input source code is vulnerable
or not.

3 Experimental Setup

3.1 Research Questions

To evaluate our model, we aim to answer the following research questions.
RQ1: How much performance improves when the slices are fed to the transformer model instead of functions?
RQ2: Does our approach solve the root cause’s excluding issue?

3.2 Dataset

We construct a new vulnerability dataset from Devign [8] and MSR [9]. In Devign and MSR datasets, functions
are labeled as vulnerable or non-vulnerable. For each example, at first, we generate the diff information. If
the diff information is empty for an example, we do not consider that example. To make our dataset balanced,
we remove all the non-vulnerable data with less than three slices. Then, we extract several slices from the
remaining examples and label them according to our approach. Finally, we build two datasets: (i) function-level
and (ii) slice-level dataset.

Level / Split Train Test Validation
Functions
Vulnerable
Non Vulnerable

13796
6927
6869

1724
865
859

1724
865
859

Slices
Vulnerable
Non Vulnerable

35143
16935
18208

4425
2128
2297

4394
2102
2292

Table 1: Function-level and slice-level data distribution over different splits.
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For the function level dataset, we randomly select 80% of the functions as the training set, 10% of the
programs as the testing set, and the remaining 10% as the validation set. For the slice-level dataset, we consider
the slices extracted from the training, testing and validation sets of the function-level dataset as the training,
testing and validation sets, respectively. Table 1 shows the details data distribution over the train, test, and
validation data splits.

3.3 Hyper parameters

We use a max length of 400 to train both of the models. We train the models up to 10 epochs with a batch
size of 256 and an initial learning rate of 0.005. We save the best model checkpoint that achieves the highest
accuracy on the validation set, and use that saved weight during testing.

3.4 Evaluation Metrics

To evaluate the effectiveness of our model, we used the following evaluation metrics:
Accuracy is the fraction of correctly predicted vulnerable/non-vulnerable functions out of all the functions [10]
and is calculated as -

Accuracy =
TP + TN

TP + TN + FP + FN

Here TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative, respectively.
Accuracy gives a general overview of how well a model performs. If there is an imbalance in the number of
vulnerable and non-vulnerable functions in the dataset, performance can be skewed by the majority class.
Precision indicates the fraction of correctly predicted vulnerable functions out of all the predicted vulnerable
functions. [10]. It is computed as -

Precision =
TP

TP + FP

Recall indicates the fraction of correctly predicted vulnerable functions out of all the actual vulnerable functions.
The formula is -

Recall =
TP

TP + FN

F1 score is a way to combine both precision and recall into a single measure by giving equal weights to both
of them. It is generally described as the harmonic mean of precision and recall [5]. It can be formulated as-

F1 score = 2 ∗ Precision ∗Recall

Precision+Recall

F1 score is preferred over Accuracy when there is an imbalance in the classes, but we crafted our dataset to
eliminate the imbalance of vulnerable/non-vulnerable classes. So, we utilize both Accuracy and F1 Score to
evaluate our model.

3.5 Experimental Design of Research Questions

RQ1. For RQ1, we train the CodeBERT [2] model using our two datasets: slice-level and function-level. We
use our proposed approach to train and test the model when the slice-level dataset is used. We feed the slices
of an input function to the model, get the prediction of these slices and classify the function as vulnerable if at
least one of its slices is vulnerable. For the function-level dataset, we directly feed the functions as the input to
the transformer model and the output of the transformer model is the prediction of the input function.
RQ2. For RQ2, we search for examples whose ground truths are vulnerable and meet the following two criteria:

1. The function is predicted as non-vulnerable with the function-level approach, but the root cause is dis-
carded because of the max length hyperparameter.

2. The function is predicted as vulnerable with the slice-level approach; this time, the root cause is included
in the input slices.

If these kinds of examples are found, then we can make a hypothesis that our proposed approach works to
resolve the root cause’s excluding issue.

4



4 Experimental Result

RQ1: How much performance improves when the slices are fed to the transformer model instead
of functions?
Table 2 shows the performance of the CodeBERT model for the two approaches. Overall, our proposed model
achieves better performance than the function-level approach in all four metrics. It gets 0.731 Accuracy, 0.765
Precision, 0.67 Recall, and 0.715 F1 scores. We can see that the recall score improves from 0.657 to 0.670, which
means that when our approach is used, the number of false negatives decreases and the number of true positives
increases. To get more information, we did some analysis on the predictions and found that 9 of the vulnerable
examples which are predicted as non-vulnerable in the function-level approach are predicted as vulnerable in
our approach. This implies that our approach performs better than the function-level approach.

Dataset Granularity Accuracy F1 Score Precision Recall
Function 0.724 0.705 0.761 0.657
Slice 0.731 0.715 0.765 0.670

Table 2: Results of function and slice-based approaches

RQ2: Does our approach solve the root cause’s excluding issue?
In RQ1, we found nine vulnerable(ground truth) examples whose predictions are non-vulnerable in the function-
level approach and vulnerable using our approach. We inspected these examples to answer RQ2. We found
four examples that are big in size, and the root cause is not included within the max length tokens in the
function-level approach. On the other hand, our approach generates slices from these functions where the slices
are very smaller than the actual functions, and the root cause is included within the max length tokens. We
publish these four examples at https://shorturl.at/gisRU.

1 static int sp5x_decode_frame(AVCodecContext *avctx,

2 void *data, int *data_size,

3 AVPacket *avpkt)

4 {

5 // ...30 lines

6 AV_WB16(recoded+j+7, avctx->coded_width);

7 // ...20 lines

8 avctx->flags &= ~CODEC_FLAG_EMU_EDGE; // 56th line

9 av_init_packet(&avpkt_recoded);

10 avpkt_recoded.data = recoded;

11 avpkt_recoded.size = j;

12 i = ff_mjpeg_decode_frame(avctx, data, data_size, &avpkt_recoded);

13 av_free(recoded);

14 return i;

15 }

Listing 1: A vulnerable function which is predicted as non-vulnerable in function-level approach and predicted
as vulnerable in our approach. The highlighted line is the root cause of the vulnerability.

In listing 1, we show a vulnerable example where the root cause is at the 56th line. The function level
approach predicts this example as non-vulnerable. In listing 2, we show a slice generated from the function of
listing 1. We can see that the slice is smaller than the actual function, and the root cause is also included in
the slice. Our proposed slice-level approach predicts this slice as vulnerable. To sum up, our approach solves
the root cause’s excluding issue to some extent.

5 Related Work

Several transformer-based approaches have been proposed for vulnerability detection in recent years. CodeBERT
[2] and VulBERTa [3] are two transformer-based models that predict software vulnerability at function-level
granularity. They use the same architecture, RoBERTa [11], but use different tokenization methods. LineVul [4]
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1 static int sp5x_decode_frame(AVCodecContext *avctx,

2 void *data, int *data_size,

3 AVPacket *avpkt)

4 const uint8_t *buf = avpkt->data;

5 int buf_size = avpkt->size;

6 if (!avctx->width || !avctx->height)

7 buf_ptr = buf;

8 AV_WB16(recoded+j+5, avctx->coded_height);

9 AV_WB16(recoded+j+7, avctx->coded_width);

10 if(avctx->codec_id==CODEC_ID_AMV)

11 avctx->flags &= ~CODEC_FLAG_EMU_EDGE; // 56th line

12 i = ff_mjpeg_decode_frame(avctx, data, data_size, &avpkt_recoded);

13 return i;

Listing 2: A slice produced from the listing 1. The root cause is highlighted at line 11.

works on line-level vulnerability detection, which depends on the function level transformer, CodeBERT, and
uses attention scores to detect vulnerable statements. In these transformer-based approaches, a fixed number
(max length) of tokens are passed to the models, and the remaining are discarded. Thus, for functions longer
than the max length, the causes of vulnerability may remain unused in the training.

VulDeePecker [12] and SySeVR [6] are approaches that identify vulnerabilities at the slice level. They
use RNN (e.g., LSTM and BGRU) to train the detection models. MVD [5] is another slice-level approach
that detects memory-related vulnerabilities. It uses flow-sensitive graph neural networks (FS-GNN) for model
training.

To the best of our knowledge, our work offers the first approach that predicts function-level vulnerability
using the slice-level predictions of the transformer-based model.

6 Conclusion and Future Work

In this work, we propose a transformer-based model to detect software source code vulnerability at the function
level using program slices. Our approach generates slices using the techniques defined in SySeVR and MVD
and uses these slices to train and test the model. As the transformer-based model discards the statements
contributing to the vulnerabilities after max length, our approach reduces the possibility of excluding the root
cause to minimal for long input functions.

In the future, We only use the CodeBERT transformer model for our study. In future, we plan to train
the model with different transformer-based models. We also plan to train our model with other datasets. In
addition, we want to use our approach in inter-procedural programs, and for that, we aim to extract program
slices with additional information, i.e., call relations.
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