Explaining CodeBERT’s prediction for Vulnerability Detection using
Markov chain and Integrated Gradient

Md Mahbubur Rahman, Shaila Sharmin,
December 2022

Abstract

Transformer-based models show significant performance in Natural Languages Processing (NLP) and
Computer Vision (CV). CodeBERT is a recent transformer-based model that achieved state-of-the-art source
code vulnerability detection performance. Although CodeBERT can predict whether an input code is vul-
nerable or not, there is no way to explain which features of the input source code are responsible for that
prediction. Different explainability tools are proposed to compute the relevance of input tokens for the
model decisions. However, none of them considers the information flow across layers of the transformers
and provides the class discriminative explanation. In this project, we propose an explanation approach that
leverages the information flow across layers of the codeBERT model using the idea of the Markov chain and
the integrated gradient. Our model outperforms the baseline model by at least 2.57% top-10 accuracy. Our
code and dataset are available at | https://github.com/mahbubcseju/TransformerExplainability.

1 Introduction

Vulnerable software is a threat to any kind of software security. Vulnerability can be of different types ranging
from privacy, and security to data leakage. Therefore, fixing vulnerable code chunks or identifying potential
vulnerable portion of code is important for making any system secure. Deep learning has greatly enhanced
software vulnerability detection in recent years. Some transformer-based models like CodeBERT [1] also achieved
state-of-the-art performance in vulnerability detection. These models have a high level of classification accuracy,
but their decision-making and prediction processes are unclear. It is impossible to determine whether the model
use the proper features to make a prediction.

Explainability tools help us in this regard by giving us scores for each input token or feature and can explain
the relevance of input features for the model decisions. The higher the score of a feature, the more important
the feature is for that prediction. Based on this score, we can determine the score for each statement or line in
the source code, which will enable us to identify the vulnerable lines in a function or section of code.

The most widely used method to explain Transformer-based method is to leverage the attention weights in the
encoder blocks. The simplest approach to use attention weights for explainability is to use raw attention scores
12], [3] of the class token. However, Abnar and Zuidema [4] raised a concern that the contextual information
from tokens becomes similar as going deeper into the model. This leads to an unreliable explanation of the
information flow throughout the model if we use raw attention weights. To address this problem, the transition
attention maps [5] method was proposed for Vision-Transformer that uses the information flow to explain which
features the transformer focuses on to make the prediction. Though Vision-Transformers and CodeBERT use
different architectures and APIs, the information flow process is same in both cases and the above concept can
be used to explain the prediction of CodeBERT.

Following the lines of the above method, we continue to explore the information flow in CodeBERT. In this
work, we propose a modified version of [5] that relates the information flow in the CodeBERT model to the
Markov process, using the hidden states for tokens at each layer. These states start from an initial value and
are recursively changing along with layers according to the CodeBERT’s processing for tokens’ representations.
When a data sample passes through the attention blocks of the CodeBERT, traits are left in the computed
attention scores. To track the traits and investigate the information flow, our approach considers these attention
weights as transition matrices within the context of the Markov chain as they are naturally row-stochastic
matrices, with each row summing to 1. Therefore, the proposed approach propagates the information from top
to down and computes the relevance between high-level semantics and input features using transitions of states.
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Figure 1: Basics of CodeBERT encoder

Furthermore, to exhibit the class discriminative ability, the proposed approach combines the idea of attentions
being transition matrices with Integrated Gradient @ to assign the importance scores w.r.t. the predicted
category to input features. Experiments result show that our approach outperform the baseline methods.

2 Background

2.1 CodeBERT for Vulnerability Detection

CodeBERT is a pre-trained model for multiple programming languages like Python, C/C++, Go, Java, etc.
It is developed based on a transformer-based architecture named RoBERTa and can be used for several
down-streaming tasks such as clone detection, vulnerability detection, code search, etc.

For vulnerability detection, CodeBERT takes the whole input program as a flat input sequence and tokenizes
the sequence. During tokenization, it adds two extra tokens; one is the [CLS] token which is added at the
beginning of the sequence, and another is the [SEP] or [S] token, which is added at the end of the sequence. It
then represents each token as a vector of embed_dim size where embed_dim is a hyper-parameter in CodeBERT.
If the input sequence has T tokens, after converting each token into a vector of size embed_dim, it gets a matrix
of size (T x embed_dim). The token embedding then goes through N encoder blocks sequentially. The dimension
of the input and output of each encoder block is the same, and the output of one encoder is the input of the next
encoder. A specific encoder block is responsible for finding relationships between the input embedding. The
initial block learns the basic relationship, but the more it goes through the encoder block, the more complex
relation it learns.

The input is passed through a multi-head attention layer in each encoder block. The multi-head attention
layer computes the attention multiple times in parallel with different weights and then concatenates these
attentions together. The result of each of those parallel computations of attention is called a head. After
normalizing the output of the multi-head attention, the result is sent to a feed-forward network. The normalized
output is the output of the encoder block. After getting the output of the final encoder block, the output
embedding of the [CLS] token is sent to a classification layer (multi-layer perceptron). Finally, the classification
layer decides whether or not the input source code is vulnerable. The basics of codeBERT are described in the
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Figure 2: Workflow of our proposed method

2.2 Explainability of Deep Learning

Deep learning models are like a black box, and it is difficult to say which features they emphasize on to make a
prediction. Explainability tools make this thing transparent and help us to explain how much a token contributes
to making the final decision. Several explainability techniques have been proposed in recent years, and among
them, gradient-based methods are very popular. Some of them are discussed below:

e Gradient [8] is the first gradient-based explainability technique where the gradient of the output is calcu-
lated with respect to the input.

e Integrated Gradient @ starts with a baseline that does not have any information about the sample. It
then reaches to the input sample from the baseline by k steps by generating interpolated data in each
step. During these steps, the interpolated data are passed through the classification model, and the output
gradient is calculated with respect to the input. The summation of each of the token’s gradients over k
steps denotes the relevance/contribution score of the token.

e DeepLift ﬂg[] uses a reference input along with the actual input. It compares the activation of each neuron
with the reference activation and propagates the difference (same as gradients) to learn the important
features.

All the above approaches are model agnostic, and none of them focus on the transformers’ internal mecha-
nisms. Hence, this work proposes an approach that leverages the information flow inside transformers through
the Markov chain. Our approach also leverages Integrated Gradients to remove noise introduced by the
information flow.

3 Owur Methodology

In this section, we briefly introduce our proposed methodology. Figure [2| demonstrates the workflow of our
proposed method.



3.1 Markov Chain in CodeBERT

A markov chain is a stochastic process that describes a series of random variables where the probability of the
current state depends solely on the previous state. On the other hand, we know that the output representation of
each CodeBERT encoder block is input to the next block. As a result, we can connect the CodeBERT decision
process with the Markov chain by considering the representation of output tokens at each encoder block as
states. As the attention weights in each encoder block are in charge of computing the output representation
from the input representation, we can construct the link between the input and output tokens by computing
the transition of states using the attention weights. To sum up, we can use the representation of output tokens
at each encoder block as states and compute the transition of states using the attention weights.

3.2 Transitions of States

The output embedding of the [CLS] token of the last encoder block is used for the classification task. Hence,
some works use the attention of the [CLS] token from the last encoder block to provide explanations, which
produces poor explainability. The reason could be the semantic gap between the lower and higher encoder blocks.
Therefore, we can use the state transition process (mentioned in to determine the relevance between the
input tokens and model decisions.

To implement the idea, we follow the methods from [5] and initialize the states of the Markov Chain states(®)
with the attention weights of the [class] tokens from the transformer’s final block, as shown below:

states®) = E[AttentionWeightsgfid](CLS)
Here, F is the average across multiple heads in the attention layer and (CLS) is the index of the [CLS] token,

and (B) is the index of the last block. The overall transition matrix is generated as follows:

: E[AttentionWeights'?) 1(cl hen i — 0
States(z) = { [ entionvy erg Shead](c ClSS), whnen ? (1)

states(—1) + Lstates(i—1) . E[AttentionWeightsg;li)], otherwise

We should mention that each encoder block has a corresponding states®, which explains the information
flow propagated to that block.

3.3 Integrated Gradient for Noise Removal

During the transition process, some irrelevant features or noises will be introduced, which need to be diminished
by some method. So, we use integrated gradients to get the feature’s relevance scores. The reason for using
integrated gradients rather than only gradients is that the integration process effectively retains the relevant
parts and reduces the gradient’s self-induced noise [6]. Finally, by weighting the states of the tokens, statesP),
with the integrated gradient’s score, some noise that is created during the transition process will be reduced
or eliminated [5]. By combining the state of the tokens with the integrated gradients, we also get the class
discriminative explanations.

3.4 CodeBERT Explainability

In summary, we provide an explainability approach by leveraging the information flow inside CodeBERT. We
consider the states of tokens at each encoder block as the information flow through that block and use that
information flow as a Markov process. We compute the transition of states with the attention weights at each
layer. Finally, to get the class discriminative explanation, we combine the integrated gradients with the states
of the tokens. Thus, this approach exploits the information flow through the attention module and is able to
explain the contributions of tokens with respect to the predictions. Algorithm 1 describes our approach.



Algorithm 1 Transformer Explainability
Input: Input function/program X
Output: Explainability score

1: states « E|AttentionWeights\®) (CLS)

2: fori=1to B do _
3 AverageAttention + E[AttentionWeightséfJ)]
4: states = 1states - AverageAttention + ;states
5
6
7

: end for
: IntegratedGradientsScore = IntegratedGradient(X)
: ExplanationScore < IntegratedGradientsScore () states

4 Experimental Setup

4.1 Dataset

We construct a new vulnerability dataset from Devign |10] and MSR [11]. In Devign and MSR datasets, functions
are labeled as vulnerable or non-vulnerable. But for the vulnerable samples, they don’t have any information
about which lines are vulnerable within the function. To find out the vulnerable lines in the vulnerable functions,
we follow the existing literature [12]. At first, we generate the diff information from the current commit and
the next commit of the example functions. Then, we label a line as vulnerbale if it is removed or altered in the
next commit (starting with " in diff files). If the diff information is empty for a sample, we don’t consider
that sample. To make our dataset balanced, we take around same amount of non-vulnerable data of vulnerable
data. Finally, we divide the data into three different splits, train, test and validation by the ratio of 80:10:10. We
use the train and validation data for fine-tuning the CodeBERT model and test data to evaluate our proposed
explanation approach.

Class / split Train | Test | Validation
Vulnerable 6927 | 865 865
Non Vulnerable | 6869 | 859 859
Total 13796 | 1724 1724

Table 1: Data distribution over different splits.

4.2 Evaluation Process

We, at first, fine-tune CodeBERT with our training and validation data. During fine-tuning, we use CodeBERT"s
default settings. We don’t perform any hyper-parameter tuning as our main focus is the evaluation of the
explainability tools. After fine-tuning the CodeBERT, we run our method as well as some baseline methods
using the test data. We compare our approach with strong and up-to-date baselines such as DeepLift, Gradients,
and Integrated Gradients. These methods as well as our approach provide us the importance score for each token
of the input sequence. It is difficult to evaluate any method based on the token’s score. Therefore, following
the existing literature [12], we calculate the score for each line of the input function/program from the token’s
score. The score of each line is the average of the scores of its tokens.

4.3 Evaluation Matrices

To evaluate our approach, we follow the existing literature [12] and use the following two matrices:

e Top - 10 Accuracy: It is the percentage of vulnerable functions where at least one vulnerable line
appears in the top-10 rankings. The top-10 rankings are constructed by taking the top-10 scored lines
from the sorted list of lines. Here, the lines are sorted by their scores in descending order.

e Initial False Alarm (IFA): It is the measure of average non-vulnerable lines that appears before the
first vulnerable line in the sorted list of lines. Here, the lines are sorted by their scores in descending order.

We only use the vulnerable samples during using these matrices.



5 Experimental Results

Table [2] presents the evaluation results of our proposed method and the baselines. We can see that our proposed
approach achieves 2.57% , 9.47% and 2.85% higher top-10 accuracy than Integrated Gradient, Gradients and
DeepLift, respectively. Moreover, our approach improves significantly over the baseline methods regarding IFA
score. To sum up, our approach outperforms all the three baseline methods.

Method Top-10 Accuracy | Initial False Alarm
DeepLift 62.81% 9.01
Gradient 56.19% 9.43
Integrated Gradient 63.09% 8.98
Our Approach 65.66% 8.25

Table 2: The Top-10 Accuracy and IFA of our approach and three other methods. (1) Higher Topl0 Accuracy
= Better, (}) Lower IFA = Better.

6 Related Work

Deep learning models mainly depend on the important features to make a decision. Therefore, it is important
to know how the information is changing/transmitting within the models to make a correct decision. Gener-
ally, methods based on gradients are applied to highlight the input parts relevant to the prediction. Smilkov
et al. |[13] proposed a method to remove the noisy features by adding noises to the input and then averaging
the gradient. Other gradient-based models are DeepLIFT (Deep Learning Important FeaTures) [14], SHAP
(Shapley Additive exPlanations) [15]. Several model-agnostic methods are also used for calculating important
features like LIME [16] and Deep Taylor Decomposition [17] and Layer-Wise Relevance Propagation [18]. Al-
though these gradient-based and model-agnostic methods can be applied in transformer models like CodeBERT,
there are limited approaches specifically designed for the transformers. Hila et al. conducted [19] research on
explainability for transformers using Taylor decomposition property. Tingyi et al. [20] proposed an approach
to explain information flow inside vision transformers using the Markov chain. However, most transfer-based
model interpretation was conducted in the computer vision field; there are few works done for NLP-based trans-
formers. Besides, none of them considers the information flow across layers of the transformers. In this project,
we propose to explore the information flow inside a transformer model named CodeBERT using the Markov
chain and integrated gradient.

7 Concluding Remarks and Future Work

In this project, we suggest a class discriminative explainability method for the CodeBERT model. This method
leverages Integrated Gradient and Markov chains to provide the explanation. The Markov chain is used to
leverage the information flow inside the CodeBERT model, and the Integrated Gradient is used to get the
class discriminative explanations. As shown by the experiment results, our approach outperforms other existing
state-of-the-art methods.

Although we only tested this approach for vulnerability detection in source code, this can be used for any
NLP-based down-streaming tasks which use transformer models. In the future, we will apply the approach
using other datasets as well as Transformer-based architectures.
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